Spectrum of the Schrödinger operator on a line bundle over complex projective spaces
نویسندگان
چکیده
منابع مشابه
The Standard Model Fermion Spectrum From Complex Projective Spaces
It is shown that the quarks and leptons of the standard model, including a right-handed neutrino, can be obtained by gauging the holonomy groups of complex projective spaces of complex dimensions two and three. The spectrum emerges as chiral zero modes of the Dirac operator coupled to gauge fields and the demonstration involves an index theorem analysis on a general complex projective space in ...
متن کاملThe spectrum of the twisted Dirac operator on Kähler submanifolds of the complex projective space
We establish an upper estimate for the small eigenvalues of the twisted Dirac operator on Kähler submanifolds in Kähler manifolds carrying Kählerian Killing spinors. We then compute the spectrum of the twisted Dirac operator of the canonical embedding CP d → CP n in order to test the sharpness of the upper bounds.
متن کاملComputing Volume Function on Projective Bundle over a Curve
— We establish an explicit link between the volume function on a projective variety fibered on a curve and the asymptotic behaviour of the canonical filtration of direct images. As an application, we calculate explicitly the volume function on projective bundle over a curve.
متن کاملProjective Spectrum and Kernel Bundle (ii)
For a tuple A = (A1, A2, . . . , An) of elements in a unital Banach algebra B, its associated multiparameter pencil is A(z) = z1A1+z2A2+· · ·+znAn and its normalized multiparameter pencil is A∗(z) = I + A(z). The projective joint spectrum P (A) or P (A∗) is the collection of z ∈ C such that A(z), or respectively A∗(z), is not invertible. This paper first computes the joint spectrum for the Cunt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1988
ISSN: 0040-8735
DOI: 10.2748/tmj/1178228026